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ABSTRACT. We consider a class of probability measure dependent digahsystems which arise
in the study of multiscale phenomena in diverse fields sudmasunological population dynam-
ics, viscoelasticity of polymers and rubber, and polar@atn dielectric materials. We develop an
inverse problem framework for studying systems with digtted temporal delays. In particular,
we establish conditions for existence and uniqueness ofotfveard problem and well-posedness
(including method stability under numerical approximaspfor the inverse problem of estimating
the probability measures. We show that a motivating clagaadels of HIV infection dynamics
satisfies all the conditions of our framework, thereby pdawj a theoretical foundation for inverse

problem computations with these models.

1. INTRODUCTION

In this paper, we present a general theoretical framewarkiging implementable approxima-
tion ideas for inverse problems involving measure dependigmamical systems. In particular, we
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treat inverse problems for systems wherein the dynamicgiaea for the expected values of some

of the states
%(t,P) = &plX(t, )] = /Q x(t,)dP(q),

with respect to a probability measuredefined on the Borel measurable subsets of an admissible
parameter seD. Here, for example, the expected state dynamics might endiy a differential

equation

X(t) = f(t,X(t), P) )

where the right side is dependent on the meaBurkn general, the functiori can also represent
a delay or partial differential equation. Whatever the fafithe system, the individual dynamics
(for eachg € Q) for x(t,q) are not available in the cases of interest to us here.

We specifically focus on a framework for systems of measupedéent delay differential equa-
tions that are motivated by examples arising in cellulaelenodeling of HIV pathogenesis. In
this case, the probability distributions characterizeagglinherent in cellular pathways for virus
production. These delays represent lags between acutiorfeof cells and the initiation of vi-
ral production as well as between productive acute infactiod chronic infection (e.g., see the
discussions in [19, 22, 25, 29, 30, 31, 32]). The particuladel that motivates our mathematical
efforts here was derived in [6] to describe infection dynesnin anin vitro experiment and is given

by the system of integro-differential equations

(1.2) V(t) = —cV(t) +nA/(i A(t+T1)dPy(T) +ncC(t) — pV(t)T(t)
1.2) A = (18— SX()AW) —y | AL+DIRD) + pVOT()

(1.3) C(t)

(rv—8c - 3X)C) +y [ AL+ TR

(1.4) T(t) = (ry— 8y — X (t) — pV(1)) T(t) +S.
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The compartment variables consist of the vixugnd the acutely infected, chronically infected,
and uninfected T-cellsA, C, and T, respectively, whileX represents the total cell population
(A+C+T). The probability measure® andP, correspond, respectively, to the distributions of
the two pathogenic delays discussed above. In the denvatithis model, we ascribed no subclass
variability to A andT and consequently only the variablésandV are actually expected values
(with respect td?, andP,, respectively). All constitutive parameters Qa, nc, p, f'v, 0a, 9, Y, &c,

ru, 0y) and details of the model as well as its derivation are fulgatibed in [6].

The example motivating our efforts here is merely one of sweportant examples of measure
dependent dynamics that have arisen in recent applicat®ealistic models in viscoelasticity of
polymers and rubber as well as polarization in dielectri¢anals share certain features with our
formulation. Specifically, recent studies [12, 13] of malke-based stick-slip reptation models

for heterogeneous viscoelastic polymer chain materiaisive systems of the form

9%u(t,x) _ ig(t,x; P)=F(t),

(1.5) ot2 X

whereu is the tensile displacement,is the measure dependent stress

(1.6) o(t,x;P) :ge(e(t),é(t))—|—v/rel(t,x;T)dP(T),

with straine = % and “internal” straire; defined by

(1.7) %(t,x;r) —l-%el(t,x;T) = g(t,x)h(e(t,x)).

In [14] it is shown that similar models (with different nonéarities in (1.6), (1.7)) are important
if one replaces Fung kernels [21] with equations for disti@al molecular mechanisms in describ-
ing shear response in biotissue. In another important egpdin [8], the systems are the usual
Maxwell’s equations for the electromagnetic fieEsndH in a heterogeneous dielectric and are
given by

OxE = - 0-D=0

OxH = £+J OH=0

D — erE+T,
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with the exception that the probability measur® dependent macroscopic polarizati®ns given
by

20)= [ [pat0)+ paltid)dP(T,0).

In this case, the microscopizientational(Debye) polarizationp; (t; 1) is defined by
.1 ~
P1+-p1=¢€E,
T
and the microscopielectronic(Lorentz) polarizatiorpy(t;d) is defined by
mpo +cpz +kpy = €E,

with d = %m In the equations for botlp; and p», the parameters andd represent relaxation
parameters which may vary over the admissibleBet D according to some unknown but sought
after probability measure = P(t,d).

In each of these examples, one seeks to characterize thaahb#&havior to perturbations by
finding a measur@®* that provides the “best” mathematical system response wherpared to
observations of the physical system.

Finally, a more classical use of measure dependent dynhsystems can be found in the
literature on “relaxed” or “sliding regime” control systen(e.g., [28, 35, 36] as well as in Preisach
models for hysteresis in materials (e.g., see [10, 11, 24342]7and the references therein).

In this paper, we formulate an inverse problem frameworkdstimating the measures (us-
ing system observations) in systems of probability meadependent nonlinear delay differential
equations. To do this, we employ the Prohorov metric (edeintao weak convergence of mea-
sures) in a functional analytic setting. We also show howewetbp an approximation approach
that is readily implemented to obtain computational methdeéinally, we illustrate that the HIV
systems in [6] are concrete realizations of systems satigte hypotheses in our framework. We

thus provide a theoretical foundation for the computationethods used with experimental data

in [6] as well as provide a general framework for a class ofeys arising in other applications.
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2. THEORETICAL FRAMEWORK FORGENERAL DELAY SYSTEM

2.1. Theoretical Framework. We begin by considering amdimensional generalized delay sys-

tem:
(2.1) X(t) = g(X(t),%;,P,Ps,...,Py),t>0
(2.2) (x(0),%) = (®(0),9),

for the piecewise absolutely continuous (PAC) initial citioth ®, defined on the hysteretic do-
main Q = [—r,0] wherer > 0. Following the standard practice in the delay differdreiguation
literature, we let the notatior represent the functiofh — x(t +0), —r < 8 < 0. Furthermore,
we letS be the class of all Borel subsets @Qf(the Borelo-algebra), and”(Q) be the space of
probability measures ofQ,S). In order to make this framework applicable to realisticlpemns,
we restrict the space of admissible probability distribn Z7,4(Q) to PAC functions with a finite
number of saltations, whef® € Z,4(Q), i =1,2,...,np. To establish the theoretical framework
necessary to estimate a finite numbgrof probability distributions?, i = 1,...,np, in (2.1), we

define the set

Mad = .ﬁe@ad(Q) :

Thustte Mag means thatt= (Py,...,Py)), for Py,..., Py € Zad(Q).

In the following discussion, we make use of a construct fralwaaced probability theory, the
Prohorov metrigqdenoted byp). As we note below, convergence in the Prohorov metric isvegu
lent to “weak convergence of measures” (which is actuallgpkteconvergence when considering
P C €, where% is the space of continuous functions @Qrwith the max norm). We recall the
definition of the Prohorov metric o (Q) for any arbitrary complete metric spa@ewith metric

dist. For any closedr C Q ande > 0, we define the-neighborhood of by

F& = {geQ:dist(d,q) <€, for someqe F} .
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The Prohorov metric is then the mappipg 22(Q) x 22(Q) — R defined by
p(P,P2) = inf{e>0:Py(F)<Py(F%) +¢, FclosedF Cc Q}.

It is known (see [16, 17, 20, 26, 33]) that convergeRge- P in the Prohorov metric is equivalent

to the statement

/Q(den—>/Q(deforaII(pe<5(Q),

which is convergence in expectation or distribution, alatledl weak convergence of measures.
We define a topology farl,q by extending the Prohorov metric such thatforte MNyq, we let

Np

pn(re ) = 3 (R,

wherert= (Py,...,Py,) andft= (Py,...,P,,). Given our datal € R, ny < n, sampled at discrete
timestj,i =1,2,...,n; and observation matrik € R"*", the goal of the inverse problem is to find

a solution to

(2.3) min J(1td) = min i|CX(ti,T[>—di|2,

TeMyq T[Eﬂadi

wherex is the solution to (2.1)-(2.2) correspondingmoandd = {d1, dy, ... dn }. Note that in
general,J need not have a unique minimizer, and thus the corresporstihgion (denoted by
M*(d)) could be a set of probability distribution functions. Inglease, we would then define the

distance between two of these sitgd) andM*(d) (for datad, d) to be
oy (M(d),M*(d)) = inf{pn(TL ) : e M*(d),fre M)},

which is the well-known Hausdorff distance (see [23]).
To establish the well-posedness of (2.3) within our franwave now examine the forward

and inverse problems.
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2.2. Forward Problem. To prove the well-posedness of the forward problem, we neexstab-
lish conditions for the existence and uniqueness of a soluti (2.1)-(2.2) as well as its continuous

dependence upamin the pn metric. We first give conditions on the functigrin (2.1).

Condition 2.1. Let (n,@ 1), (},®,7) € R" x PAC(Q;R") x Mag. We require that the function
g: R"x PAC(Q;R") x Mag — R", satisfy

lg(n, .M —g(f,@.7)| < Ke{In—1l+|o—¢,}+T(@m,

whereK, > 0,

, ||, @re the Euclidean norm iR" and the max norm on PAQ; R"), respectively,

and the last term on the right sid&(@; T, 71) is some function such that for eaghe PAC(Q; R"),
7 (@) — 0 aspn(T 1) — 0 and|.7 (¢ 7L )| < K|

Following the standard Picard iteration arguments for prgwthe existence and uniqueness of
the solution to an ordinary differential equation on a fimiteervall = [0,t¢], we begin by rewriting

(2.1)-(2.2) as

(2.4) x(t){ ®(0) + Jp9(X(s), %, ds for tel

d(t) for teQ,

with initial condition®. In the subsequent proof, we will make use of the followingrdton.

Definition 2.2. Let successive approximations the solution of (2.4) on—r,t;| be defined for

j=0,1,2...,as
®(0) fortel
V) =
Y o) forteQ
(2.5) VAET) ®(0)+ [39(y!(s), ¥, 1ds for tel
®(t) fort€Q,

with initial condition® andTtt e Mgg.
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Theorem 2.3. Consider the system of equations (2.1) with initial comditb € PAC(Q;R") and t
in a finite interval I= [0,t¢], 0 < tf < oo. If the function g satisfies Condition 2.1, then there exists

a unique solution to (2.1) on 1.

Proof. The general idea of our argument, which is quite standarth show that the successive
approximations defined in (2.5) converge to a unique saiutig(2.1).

Let the residual function of two functiong, % be defined as

(2.6) e(t;x, %) = [X(t)—X(t)|+ % — Kl ,

for x,% € PAC(Q;R"),t € 1.

If we consider the residual for the functiows® andy!, as defined in (2.5) we find that foe |

andj >0
. . t . i ) .
ety Lyl = ' [ {09~ gy (9).y¢ % ) s
 ratvi(s) vl i~1(g) vi-1
+'/0 {9y (9).y, 1) — gy (9),yl Lm0} ds
t L. t+- L
< K / e(siyd yi ) ds+ Ky / e(syd,yl )ds
0 0 o0
and thus
. . t . .
(2.7) ety Tyl <2k, / e(syl,yl ds.
0

Note that the case fgr= 0 (witht € 1) is special:

ety ) = [y OO +[w -]
[ atPeRmas +| [ ayP(s). 8 s
0 0

< Z/Ot {Ki_|e(s,y2,0)|} ds

< 2K [ (9] + ], ds

[oe]

< 2K (|P(0)] + [Pl
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and thus
et yP) < Kat,

where

K = 2K (|P(0)] +|P|,) -
We claim that from (2.7) and thp= 0 case, we have

Kg (2K )11
(2.8) ety Tyl < e (2K

R

Clearly, this is true fofj = 0, and the general case follows easily from induction ushg)( Using

the estimate (2.8), we can then infer that

@ Ko & (2K t)U+D
e(t: j+1 < G .
j;( W) < 2KL-Z~) (j+1)!

KG e2K|_t
- 2KL

Thus, by the comparison tet;® ,e(t; ytJ+1

,ytj) converges uniformly fot € |, which proves that
{yl(t)} converges uniformly for ali € I. Denote lim_...y! (t) asy(t). Since they!’s are continuous
and converge uniformly tg, we see thay is both continuous ohand satisfies (2.1) by taking limits
in (2.5). Note that this also yieldsabsolutely continuous dn

To prove the uniqueness of our solution, suppose we have istioat solutions{y,y} € €(I)

to (2.1). Using the same arguments as in establishing (@&’ have

i) < | [ (a(5hye) - 018) 9o}

t+-

+ ' 0 {g(y(s)7y37 T[) - g(Y(S),Vs, T[))}dS

00

t
< 2KL/ e(sYs, ¥s)ds.
0

Thus by Gronwall’s inequality we have that

V() =9t + v —¥ile < 0 fortel.
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Thusy(t) = §i(t) fort € | and also fot € Q since both solutions satisfy the same initial condition.
We have therefore now proven that there exists a uniqueisolfort € [—r,t¢]) to (2.4) and

thus to (2.1), and that the solution is in fact absolutelyticmous onl . O

Remark2.4. Existence and uniqueness can be established on any fireteaht under somewhat
weaker conditions than the global Lipschitz requiremen€Condition 2.1. In particular, under
conditions of local Lipschitz plus affine growth dominatianinfinity, one can also establish the
existence and uniqueness results of Theorem 2.3. For erarapt details of such arguments in

the case of general nonlinear systems, see [1, 2, 15].

In order to consider calculating a solution to the inversabpgm (2.3), we must establish the
well-posedness of this optimization problem, which inesd\woth proving that the solution to (2.1)
is continuous intand that there exists a solution to (2.3). Following the tgy@ent in [7], with
inspiration from [4, 5], we will do so by examining both prebh stability and method stability.

We say that théorward problem is well-posei the unique solution to the model (in our case
X) is continuously dependent upon the measuted.et us fixt € | and consider the continuity
of a solution to (2.1)-(2.2) with respect @ Thus we interpret the solutioxas the mapping

X(t,-) : Mag — R", parameterized by the tinte

Lemma 2.5.1ft €| =[0,t¢], Q= [—r,0], T€ M4q, and the right side g of (2.1) satisfies Condition

2.1, then the unique solution to (2.1)-(2.2) is point-wisatuous atit € Mggy.

Proof. Sincep is a metric topology, it suffices to argue thdt, ;) — x(t, 1) for any sequence

{m}>, where as — o, T4 — 1IN p. From the definition of solutions, we find

) —x(t, | < | ' 9(X(S, T, %6(T8), %) — 9(X(5, ), %s(10, T s

Sinceg satisfies Condition 2.1, we have that

(2.9) Ix(t, %) —x(t, m)| < /Ot KLe(s; xs(T5), Xs(10) )ds+ .7 (15, 1),
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wheree s the residual as defined in (2.6) aﬁA&m,n) = f(;f T (xs(T0); T4, T)dS Next, consider

) (0l < | [ 1908 T 3600 ) — 9(x(5, 9.5, T s

00

0
< Ot G(X(, T8 Xe(T1). T8) — g(x(S. 7)., %e(T0), )| s,

which has the same bound as in (2.9). By combining these Isonadind that

et (M) x(m) < 2K [ e(sx(m),x(m)ds

+2.7 (1, 1),
and an application of Gronwall’s inequality yields

e(t;x(15),% (M) < 2.7 (m,melouds

< 27 (m,medr

From this it immediately follows thak(t, 5) — x(t, 77)| — 0 asi — o andtg — TTin the Prohorov
metric. Therefore, we have pointwise continuity of the siolux (and thus]) with respect to the

optimization variablatof interest in (2.3). O

2.3. Inverse Problem Stability and Method Stability. As mentioned at the beginning of the last
section, in order to fully justify our claim regarding the Nyeosedness of the inverse problem, we
need to examine questions concerning the existence of txsota (2.3) as well as the dependence

of those solutions upon given data.
Theorem 2.6. There exists a solution to the inverse problem as descriné2..8).

Proof. From results in [17], we know that i is compact,( Z,4(Q),p) is compact and thus by
extension(Mag,pn) is also compact. It is well known that a continuous functioraccompact set
in a metric space attains a maximum and a minimum. By Lemman have thatt— x(t, 1), for

fixedt € I, is continuous and thukis continuous with respect tm We can, therefore, conclude

that there exist minimizers for the cost functiodal O
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Since the original inverse problem involves minimizing pirginite dimensional sets”(Q),
pursuing this optimization is clearly infeasible withowatnse type of finite dimensional approxi-
mation. We thus need to describe some approximation spaeewhich the optimization becomes

computationally tractable. L&y = {q'j\"}'j\":l be partitions oQ = [—r,0] forM = 1,2, ... and

Qo= J Qu,
M=1

where the sequences are chosen suchQbas dense iQ. For a positive integeM, let
M M
ﬂgﬂd = {T[G Myg: = (jzlpiqurjw,...,glpnijqyjm> ,
M
q'jVI €0Qu,0< pij,jzlpij =1i= 1,...,np} ,

wherel\q is the Dirac delta-measure with atomaat That is,Aq(E) is 1 if q € E and 0 ifq ¢ E.

Finally, we define
Mo = |J Ny,
M=1
and use the fact tha) is a complete, separable metric space. By Theorem 3.1 frgmnjé
have thatllp is dense inMyq in the pn metric. We can, therefore, directly conclude that any
elementr € Myq can be approximated by a sequer{ﬂ«wj}, Tv; € I'IZ'(; such that aMj — oo,
P (Tv;, ) — 0.
Following the discussion concerning Theorem 4.1 in [5], wvrstate our theorem regarding

the continuous dependence of the inverse problem upon tea giata as well as stability under

approximation of the parameter sétgg.

Theorem 2.7.Let Q= [—r, 0], assume that for fixeda [O,ts], Tt— X(t,TT) iS continuous otil,q,
and let @ be a countable dense subset of Q as defined above. Supposiectimdiserved data
dm,d € R™M ny < n, are such that, — d as m— . Moreover, suppose thal*M(dp,) is
the set of minimizers for(3 dy,) overme I'I[,\i"d corresponding to the datd,,. Similarly, suppose
that M*(d) is the set of minimizers of(%&; d) over 1t € Myq corresponding to the datd. Then,

dn (M*™M(dp),M*(d)) — 0 as M,m — oo,
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Proof. Using continuous dependence of solutiongpnompactness dfl .4, and density ofp in

Mag, the arguments follow precisely those for Theorem 4.1 in V8¢ thus can claim that
du (MM (dm), % (d)) = inf {pn (T4, T0) : T4 € M*™M(dp), te M*(d)} |
converges to zero &4, m — oo, U

Combining the results of these two theorems, we can estetdith that there exists a solution to
the inverse problem and that it is continuously dependenth@ Hausdorff sense) upon the given
data. We established well-posedness of the forward probieg@.2 and in this section, we have
shown problem stability and a limited type of method stépilstability under approximations of
the parameter sets) of our inverse problem. We can theretorelude that our inverse problem is
well-posed.

Lastly, we note that the theoretical results of this and thet section only apply to the iden-
tification of probability distributions. The extension tetdrministic parameters, i.e., ones not
associated with the delay, also follows readily from coasith the Ordinary Least Squares (OLS)
optimization overZ2,q x Mag Where 2,4 is the domain of admissible values for the deterministic

parameters.

3. APPROXIMATION IMPLEMENTATION

3.1. Approximation of the Forward Problem. The system described by (2.1)-(2.2) is a special
case of a more generalized equation that facilitates a sksoa regarding its approximation. The
full discretization development, based upon the ideas pfi§Qresented in [6, 18] and will only
be summarized here.

If we denote a generalized solution spaceZas R" x L»(Q;RR"), we can define the nonlinear

operatore? : 9 (/) CZ — Z by

2(o) = {(9(0),9) € Z: 9 HY(QR")}
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With this definition, we can generalize (2.1)-(2.2) in thenfio

a1 2(t) = a2t)

200) = 2,
wherezy € Z. As we shall see in 84 below, the system (2.1)-(2.2) is a spease of (3.1) where
2 is restricted tdR" x PAC(Q,R").

With index of approximatiom, let {ZN, PN, 7N} be our approximation scheme for (3.1) satis-
fying the conditions of Theorem 3.1 in [9], wheZ&' is a spline subspace @f PN is the orthogo-
nal projection ofZ ontoZN, and.”N is the approximating operatey™N = PN.o#PN. Thus, using
{ZN PN, 7N} we can generate an approximation to the formulation desdridy (3.1), which we

denote by

Nt = NN
N0) = PNgy.

(3.2)

An alternative description of (3.2) is
t
At) :IPNZO+/ LN (9)}ds.
0

Theorem 3.1. Given the systems described in (2.1)-(2.2) and (3.2) wjth- 2®(0),®), ® ¢
PAC(Q;R"), under Condition 2.1, we have thal(t) — (x(t),%), as N— oo, uniformly in t on

the finite interval I, where x is the solution of (2.1)-(2.2).

Proof. Following the arguments for Theorem 2.2 in [3] we readilyaibtour desired conclusion.

O

For the full details, including the selection of an apprafeibasis foZN, we direct the interested

reader to [6, 18] where piecewise linear splines were ssfokg employed.

3.2. Approximation of the Inverse Problem. Since we do not have direct access to an exact

solution to (2.1)-(2.2), our parameter estimation effats actually focused on solving

(3.3) min JN(r,.d) = min i}CxN(ti,T[)—di

TEeMyq T[Eﬂadi:

2

)
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with n; data observations. As described in the previous sectioanebtain a uniformly conver-
gent (int on finite intervals for fixedt) numerical scheme which generates an approximate solution
xN. We have not yet shown, however, thats- oo, XN(15) — X(11) asT§ — TUin the pn metric,
which is needed for general “method stability” (see [5]).gAments similar to those used in the
proof of Lemma 2.5 can be used to show that for fikédhe approximations™N (and hence™ )

are continuous imon M,q. However, the convergence pfY(t, ;) —xN(t, )| — 0 asN,i — oo is

not as obvious (but still true), and is proven in the follogZlemma.

Lemma 3.2.Lettc |, 1€ Myg, and{Tg} € Maq be such thalim;_.., pr (15, 70) = 0. Then if X (t, )
is the solution to (3.2) under the conditions of Theorem @& havexN(t, 1) — xN(t,m)| — 0 as

N,i — oo, uniformlyint on I.

Proof. Denoth’? as the first component of the orthogonal projection opetltosf Z ontozZN. By

using arguments similar to those employed in deriving iradityi(2.7), we find that fot € [0, t¢]

e(t, X (15), ¢ (1) = XN (t,75) —xV(t, )| + [} (15) = (10)]
< 2N () - ()|,

< 2‘ [ B0 s ). ). ) — g0 (s 0, s

00

<2 [[ g0t (5 ) (0. 19) - g0 (5.9, (1, s

and sincey satisfies Condition 2.1, we then know that
t

eft (), (1) < 2K [ eft () o (m)ls+ T .

where 7N(m, ) = [ 7 (x¥(m); 75, mds By the boundedness &f¥(17)|. and dominated con-
vergence, we have thf“(m,n) — 0 asi,N — . A simple application of Gronwall’s inequality
gives us that

e(t, % (15), % (1)) — 0,

asN,i — o andm, — Ttin the pn metric, and thus we conclude that!(t,75) — xN(t,m)| — 0 as

well. Note that the convergence is actually uniform on|. 0
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Corollary 3.3. Under the conditions specified in Lemma 3.2, we concludextét, miy) — x(t, 71| —

0 as N— oo for Ty — 1Tin thepn metric. As before, convergence is uniformint on I.

Proof. Consider
‘XN(LT'N)_X(L]T)} < ‘XN(t,T[N)—XN(t,T[)‘+‘XN(t,T[>—X(t,T[>} :

The first term converges due to Lemma 3.2, while the secomd t@nverges as a result of our

numerical scheme as given in Theorem 3.1. O

With this corollary, we are now prepared to examine questiconcerning the existence of a

solution to (2.3) and (3.3) as well as the dependence of thais¢ions upon given data.

Theorem 3.4. There exists a solution to the original and approximate isggoroblems in (2.3)
and (3.3), respectively. Moreover, one can find solutionth&family of problems in (3.3) that

converge to a solution to (2.3) as-N co.

Proof. As noted above, we have thél 4, pn) is compact. By Lemmas 2.9 and 3.2, we have
that bothrti— x(t, ) andrt— xN(t, 1), for fixedt € |, are continuous and thus batrandJN are
continuous with respect tm. We therefore know that there exist minimizerdlgg for the original
and approximate cost functionalsindJV, respectively.

Let {1} € Mag be any sequence of solutions to (3.3) gy, } a convergent (irpn) subse-
guence of minimizers (this is possible sifdgy is a compact metric space). Recall that minimiz-
ers are not necessarily unique, but one can always selecivergent subsequence of minimizers
in Myg. Denote the limit (inpn) of this subsequence as. By the minimizing properties of

Tl;{,k € Maq, we then know that
(3.4) IN (1) < IN() for all TEE Myg.

By Corollary 3.3, we have the convergencext, y) — x(t,) and thusdN(ry) — J(m) as

N — oo whenppn (T, M) — 0. Therefore in the limit abl — o, the inequality in (3.4) becomes

(3.5) J(") < J(m) for all e Myq,
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with 1t providing a (not necessarily unique) minimizer of (2.3). O

We have proven not only that there is a solution to the origamal approximate inverse prob-
lems, but also that as we increase the state space accurttoy approximate solution, in some
sense, it approaches a solution to the original inversel@mob

Following the discussion concerning Theorem 4.1 in [5], v/ rstate our theorem regarding
the continuous dependence of the inverse problem uponyiea data. We note that the following
theorem describes general “method stability” in problenmexg one approximates both the state

and parameter spaces.

Theorem 3.5. Let Q= [—r,0], assume that for fixeda | = [0,t], Tt— X(t,TT) is continuous on
Maq in pr, XN, JN are the approximations given in (3.2), (3.3), and lgs @e a countable dense
subset of Q as defined above. Suppose the observedgata R", ngy < n are such thatl,, — d
as m— o and thatNM(dm) is the set of minimizers for{1 dm) overme N, corresponding
to the datady,. Similarly, suppose thdfl*(d) is the set of minimizers of(@;d) over 1t € Myq

corresponding to the datd. Then, ¢ (MM (dm),M*(d)) — 0as N M, m— co.

Proof. If we combine the arguments of Theorem 2.7, Theorem 3.4, amdli@ry 3.3, as in Theo-

rem 4.1 in [5], we readily can obtain

dut (M (dm), 117 (d)) = inf { Pr1 (ML, T0) 2 TR € MR (), 7€ 117 (d) } — O,

asN,M,m— oo, L]

With the results of these two theorems, we can claim bothttiexe exists a solution to the
inverse problem and that it is continuously dependent upergiven data. We established well-
posedness of the forward problem in 82.2, and in this secti@established method stability
(under approximation of the state space and parameter)sphoer inverse problem. We can,

therefore, conclude general well-posedness of our inyansagem.
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4. EXAMPLE |ILLUSTRATION

We now outline an application of this framework to the HIV tgs (1.1)-(1.4) of 81. For fixed
tcl,neR* e PAC(Q;R*), andri= (P, P,) € Maq, consider the right side of system (1.1)-(1.4),

AN+ A2 f1(0, 1) + fa(n) + f3(t)

where
—¢ 0 nc 0 0 m 0 O
A = VT oA A y |
0 0 rv—0ac 0 0Oy 00O
0 0 0 ru—dy 0O 0 0O
&b, (2] —PNina
&p, (2] —3(yL1Ni) N2+ pnina
f1(q,m) = 2 , fo(n) = (St ;) |
&k, (2] —3(yitani)ns
| 0 i —3(yi1Ni)Na—pPnina |
and

f3(t) =[0,0,0,9".

We note that the nonlinearities exemplified by terms suclprpg)4 in f, are both biologically
unrealistic and fail to satisfy a global Lipschitz conditicSuch terms in (1.1)-(1.4) can be correctly
viewed as approximations to nonlinear saturation terms.address this issue, as we did in [6],
with an approach which is readily justified from a biologis@wpoint by saturation dynamics

principles. We defind, using f, with standard saturation limited nonlinearities by replggnina
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by p1(n1)ns anddnin; by &(ni)n; fori, j = 2,3,4, where the functionp; andd; are defined as

0 ;m<0
(4.1) pi(n1) = pn: ;0<n1<n:
pn1 sN1<n1,
and
0 :ni<O0
(4.2) Gi(Ni) =q oni ;0<mi<n
oNi ;Ni<ni,

(for finite upper boundg; € R™,i = 1,2, 3,4). The resulting functiorf, is now globally Lipschitz
(see [3]). Withg redefined for fixed as

(4.3) 9(N, @.1) = A + f1(@10) + fo(n) + f3(t),

the well-posedness of the inverse problemtice (Pp, P,) follows if we establish thag satisfies
Condition 2.1. We proceed to argue that Condition 2.1 hold®lserving that fom,fj € R4,
0,9 € PAC(Q;R*), andmti= (P1,Py), fi= (P, P,) € Mg

44) 9,9, -9, 70| < [AdlIn—2|+ Al [ fL(@ 1) — fa(@ 7| + | fa(n) — Fa()] -
To bound the second term on the right side of (4.4), let us &xam
| f1(0,10) — f1(@. 70| < | &b, [@2] — &5, [@2] | + 2|, [@2] — &5, [@2]]
< |y [@2] — &5, [@2]] + [ &5, [02] — &5, [@e] |
+2|8p, [02] — &5, (02| +2| &5, [02] — &5, (2] |

< 3|o— |, + |, [@2] — &5, [@2]|

+2[ b, [@o] — &5, [92] | -
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The last two terms comprise a function which, for fixed,, converges to zero when, P, con-
verge toPy, B> in the Prohorov metric, and moreover satisfies the domigdiound of Condition

2.1. Thus we have

| f1(@.1) — fa(@. 7| < 3|o— @], + T (gL T,

as required in Condition 2.1.
To bound the third term on the right side of (4.4), we refet® &rguments presented in Lemma

4.2.1in [6]. The multidimensional Mean Value Theorem iraplthat fom,fj € R*

fon) — f2) = || (Dia(n +6(i ~).n i) do,

where the 4< 4 matrix valued function is given by
Dfy = [ 01fr 02f2 d3fp 04 } 5

whered; f; is the partial derivative of, with respect to théth component of its vector argument.
By the definition off, we know that the quantityDf,| is be bounded by somi€&. A simple

application of Cauchy-Schwarz then yields

1) — Fa()] s/Ol}Df‘z<n+e<ﬁ—n>>}|ﬁ—n|de

§K2|n_ﬁ|7

and the combination of this bound with (4.4) yields our clawth K| = max{3,K>}.
Therefore, since the functiopsatisfies Condition 2.1, we can conclude well-posednedseof t
inverse problem of identifying distributions associatethviime delays in the HIV viral infection

dynamics described by equations (1.1)-(1.4).
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5. CONCLUSIONS

Our efforts here are motivated by a class of mathematicalaisodhich partition populations
into subclasses according to a characteristic temporalydélhese delays can be viewed as re-
alizations of an associated probability distribution eganting the percentage of a subclass in a
population. The specific microscale structure of these [atimms is, however, only accessible
as an expectation with respect to the distribution. In 81,prnesented examples of models ex-
hibiting these features which occur in a wide variety of feetdich as immunological population
dynamics, viscoelasticity of polymers and rubber, and fixdéion in dielectric materials. In 82,
we developed a mathematical framework in which we estalgigstence and uniqueness of the
forward problem and well-posedness for the inverse proldémstimating the probability mea-
sures. These results included method stability under nigadexpproximations, thus leading to a
computationally feasible methodology. Finally, we vedfibat one motivating model of HIV in-
fection dynamics (studied previously in [6]) satisfies BE ttonditions of our framework, thereby

providing a theoretical foundation for inverse problem gutations with these models.
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